
End of Summer FURSCA Report

Building a Language Model using Transformer Architecture

Ilsan Kenzhebaev

Introduction:
The transformative "Transformer" architecture, introduced in 2017, has revolutionized Natural
Language Processing (NLP), bestowing computers with the ability to comprehend language in a
manner akin to human understanding. This research endeavor embarks on the development of a
language model, leveraging the mighty Transformer to predict the next word in a sentence with
precision and context-awareness, akin to OpenAI's Generatively Pretrained Transformer (GPT)
model.

Results:
Step 1: Data Preparation
The foundation of this project lies in the careful preparation of the dataset. To create a robust
language model, we wanted a corpus with diverse and rich linguistic content. Our choice fell
upon a text dataset derived from the works of Shakespeare, a treasure trove of literary
excellence. Python's versatile file handling and string manipulation capabilities proved
invaluable for acquiring and preprocessing the dataset. With meticulous care, we removed any
extraneous characters, special symbols, and HTML tags, ensuring that the text corpus remained
pure and conducive to language modeling. The dataset was then tokenized at the character level,
converting each character into a unique token. By operating at the character level, the model
could grasp fine-grained details in the language, enabling a more nuanced understanding of
textual patterns. Moreover, tokenizing at the character level provided the flexibility to generate
not just words but also coherent sentences, extending the model's capabilities beyond traditional
word-based approaches. To evaluate the model's performance effectively, we divided the dataset
into a training set and a validation set using Python's data splitting libraries, such as scikit-learn's
train_test_split function. The validation set acted as a reality check, enabling us to assess the
model's generalization capacity to unseen data and prevent overfitting.

Step 2: The Simple Bigram
Before diving headlong into the complexities of building the GPT model, we wanted to
comprehend the rudiments of language modeling. We began by implementing a simple bigram
language model, laying the groundwork for subsequent advancements. The bigram language
model is based on the frequency of occurrence of consecutive character pairs, or bigrams, in the
training data. These bigrams act as valuable indicators of the language's inherent patterns and



dynamics. By analyzing and counting the bigrams, we were able to predict the next character
based on the most likely continuation of the sequence. In this step, we focused on building a
robust foundation for our language model, learning to process and analyze textual data
efficiently. The bigram model served as an initial reference point, enabling us to gauge the
model's performance before delving into the more complex Transformer architecture.

Step 3: Pay Attention
The self-attention mechanism, the heart of the Transformer architecture, was our next milestone.
Self-attention empowers the model to identify and assign different weights to various positions
within a sentence, allowing it to focus on relevant information while generating the next word.
To implement the self-attention mechanism, we dived into Python and NumPy, tapping into their
mathematical capabilities. The process involved calculating attention scores for each character in
the input sequence, indicating how important each character was in predicting the next word.
This was achieved through a series of dot product operations, wherein the input sequence was
multiplied with query, key, and value matrices to compute attention weights.

The self-attention mechanism revolutionized language modeling by overcoming the limitations
of traditional sequential models that struggled to capture long-range dependencies. By effectively
processing and weighing each character's importance within the context, the model acquired a
holistic understanding of the language, facilitating more accurate and contextually relevant
predictions.

Step 4: Positional Encoding
While the self-attention mechanism empowered the model to understand the relationships
between characters, it lacked inherent knowledge of the characters' positions within the text. To
address this limitation, we introduced positional encoding. Positional encoding provides a clever
solution to incorporate positional information into the model's input embeddings. Using Python
and NumPy, we generated positional encoding vectors for each character position in the input
sequence. These vectors were then added to the input embeddings before passing through the
self-attention mechanism. The addition of positional encoding vectors ensured that the model
could differentiate characters based on their positions, thereby enhancing its ability to generate
contextually relevant text. This step was pivotal in enabling the model to maintain the natural
order and sequence of characters within sentences, a crucial aspect of human language
understanding.

Step 5: The Transformer
Building upon the foundations of self-attention and positional encoding, we arrived at the crux of
our project - the Transformer architecture. The Transformer is like an intricate symphony,
harmoniously combining multiple layers of self-attention and feed-forward networks.
Implementing the Transformer was an exciting challenge that required harnessing the power of



Python and PyTorch, a deep learning framework. Each layer in the Transformer comprised a
self-attention module, a feed-forward neural network, and residual connections. Layer
normalization was applied after each self-attention and feed-forward layer to stabilize the
training process. The Transformer's multi-layered structure allowed the model to capture
complex dependencies between characters, facilitating more in-depth language understanding.
The inclusion of residual connections provided shortcuts for gradient flow, mitigating the
vanishing gradient problem and significantly speeding up the training process. As we assembled
the Transformer, our language model grew in sophistication, equipping it with the prowess to
generate coherent and contextually relevant text. It was as if we were building a powerful AI
architect, with each layer enhancing the model's language comprehension capabilities.

We could do only upto this step. Our future steps include:

Step 6: Model Training and Tuning
The next crucial step will be training our GPT model, which involves fine-tuning and optimizing
its performance. We will use Python's versatile libraries to handle this process efficiently.
Stochastic Gradient Descent (SGD) or the Adam optimizer in PyTorch will be utilized to update
the model's parameters during optimization. We will implement the language modeling loss, such
as cross-entropy loss, to measure the discrepancy between the predicted characters and the
ground truth characters during training. Precise tuning of hyperparameters, such as learning
rates, batch sizes, and the number of layers, will be crucial to achieving the best results. By
leveraging PyTorch's automatic differentiation capabilities, we will efficiently compute
gradients, ensuring a smooth and effective learning process. The training phase will involve
multiple iterations, with each step refining the GPT model's language generation capabilities.
The focus will be on unlocking the model's full potential and empowering it to generate accurate
and contextually relevant text.

Step 7: Testing and Tweaking
With the GPT model trained and honed, it will be time to put its language generation prowess to
the test. Our validation set will serve as a critical benchmark, providing a robust evaluation of the
model's performance. Testing will involve generating text and meticulously evaluating its
coherence, contextuality, and overall fluency. We will meticulously analyze the model's
predictions and assess its ability to capture the intricacies of the English language. Based on
these tests, we will iteratively refine the model, making adjustments and fine-tuning as needed.
The testing and tweaking phase will be akin to polishing a precious gem, with each refinement
enhancing the model's language generation capabilities. This iterative process will aim to ensure
that our GPT model surpasses its own limits and achieves optimal performance.

Conclusion:



This fall, we plan to finish up and then use what we've learned to create a chatbot. This project
has been a deep dive into transformers, self-attention, and language modeling, and we've learned
a ton about deep learning and natural language processing. It's set us up for even cooler AI and
machine learning projects in the future.

Our sincere gratitude is extended to FURSCA, Elizabeth Palmer, Renee Kreger, and our
esteemed guide, Dr. Bollman, for their unwavering support and guidance throughout this
research endeavor. Their mentorship has been instrumental in transforming our ideas into reality.
With the knowledge and skills gained from this project, we now embark on the path to even
more ambitious AI and machine learning projects, poised to make a transformative impact on the
world of NLP.

To the Jean Bengel Laughlin and Sheldon Laughlin Endowment for Student Research
Thank you! This opportunity to be a part of Albion’s FURSCA program this summer was super,
and I'm sure it's going to be a huge boost to my future studies and research. Thanks a ton!


